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|—Introduction

Quest for the EOS
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» EOS at high density ?
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L Introduction

Creation of super-dense mattter

One has to compress by

Gravitation Kinetic energy

p == 10pg SIS: p ~ 3po, FAIR: p ~ 8pg
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Overview models

» Ab inito approaches

Brueckner-Hartree-Fock (BHF), Relativistic Brueckner (DBHF)
variational appr., Quantum Monte Carlo
realistic NN-interaction, no parameters
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LIntlroduction

Overview models

» Ab inito approaches
Brueckner-Hartree-Fock (BHF), Relativistic Brueckner (DBHF)
variational appr., Quantum Monte Carlo
realistic NN-interaction, no parameters

» Effective field theory
Density functionals, ChPT
peturbativ, scale arguments (m;/M, ke /M), few parameters (< 2)

» Empirical density functionals
Skyrme, Relativistic Mean Field
many parameters (6-10), high precison fits to finite nuclei

» Relativistic versus non-relativistic approaches
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L Relativistic dynamics

Relativity in nuclear systems?

Relevance of relativity:

kp/M ~1/4 — velocity v ~ 1/4c

— moderate corrections from relativistic kinematics
But:

» Relativistic dynamics: new scale
RMF, Hadronic many-body theory (DBHF), QCD sum rules

—  Xg ~ —350 MeV, Xy~ +300 MeV

» Cancellation in mean field potential Us.p. ~ ¥, + X >~ —50 MeV
> Large spin-orbit force Us.o. o (o — X¢)L - S ~ +750 MeV
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Relativity in nuclear systems?

Known from phenomenology
boson-exchange, RMF:

large scalar/vector fields

= large SO force
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L Relativistic dynamics

Relativity in nuclear systems?

Known from phenomenology
boson-exchange, RMF:

large scalar/vector fields

= large SO force

V [Mev]

Is the new scale universal? - e
. . 0 1 2 3 4 5 6 7 8 9

relation to NN-scattering ? rifm]

large fields as a consequence of Lorentz symmetry 7

relation to chiral condensate ?
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[ Relativistic dynamics

One-boson exchange potentials

Bonn and CD-Bonn potentials
V(d',q)

a

4
= Y Vu(d,a) F2(d,q; M)
a=s,ps,v

,10,P,0,8,0

q1 q2
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L Relativistic dynamics

One-boson exchange potentials

) a %
Bonn and CD-Bonn potentials
,N,P,0,0,6
2 s
Vd,a)= Y Va(d,a) Fi(d a: M)
a=s,ps,v
q1 [
5 i(—q') 55" u(—a)Pa T(a') 5" U(Q) E+M [ 1
—iVa(q' q) = .
iVa(d',q) @ —qP—m2 ux(a) v 2l
Dirac structure kG = g1, kP = gpsﬁ;—,\_ﬂﬂf’ﬁ, ") =g,

— various scales and spin-isospin structure associated with meson exchange,

long range=OPE, short/intermediate range = heavy mesons
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Low energy expansion of OBE potential

V(gha) = Y [Va+ Vi71:72] O,
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[ Relativistic dynamics

Non-relativistic potentials

Low energy expansion of OBE potential

V(gha) = Y [Va+ Vi71:72] O,
a=1,5

O =1,

02 = 0102,

O3 = (o1-k)(02-k),
O4 = 5(01-1-02)'“»
Os = (o1:n)(o2-n),
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L Relativistic dynamics

Non-relativistic potentials

» Nijm 93 and Nijmegen /I

long range part due to OPE, approximate OBE amplitudes

» Argonne vig
long range part due to OPE, intermediate and short range parametrized via

operators O, and strength functions V,

» ldaho potential
Chiral effective field theory, N3LO, D. Entem and R. Machleidt, (29 free model

parameters)

> Viewk
Derivation of an effective low-momentum potential Vo« from modern NN
potentials (out-integration of high-momentum modes, A >~ 2fm~1, and use of

renormalization group methods)
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L Relativistic dynamics

Projection onto covariant operators

|[LSJ) — partial wave helicity basis — plane wave helicity basis — Covariant basis
Choice of basis
» Fermi covariants I, = {S,V,T,P, A}
S=181, V=+9"*®@v,, T=0""Q0u, P =787, A=v7"QvsV.

» Pseudovector choice (Tjon and Wallace)  'm = {S,S, (A — A), PV, PV}
Exchange covariants [ m = ST, Su(1),u(2)- = u(1)-u(2),

Pseudovector choice
Vi(lal,0) = g(lal,0) S — gi(lal,0) S + gA(lal,0) (A — A)
+gbv(lal,0) PV — gi;(lal,0) PV
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L Relativistic dynamics

Lorentz invariant amplitudes
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[ Relativistic dynamics

Self-energy in Hartree-Fock approximation

d4
Za,g(k,k[:):—l‘/ 7

F (2m)*

Dirac propagator

GBT(q) VA(ka q)ao;,BT

GP(q) = [4 + M]2mid(q® — M?)©(qo)O(kr — |a)

Y(k, kr) = Xs(k, kr) — Y0 Xo(k, kp) + v - k Xy (k, kr),
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L Relativistic dynamics

Self-energy in Hartree-Fock approximation

. d*q p A
Fa (koke) = =1 [ 505 GE@) V(K. i

Dirac propagator  GP(q) = [¢ + M]2ris(q? — M2)©(q0)O(kr — al)

Y(k, kr) = Xs(k, kr) — Y0 Xo(k, kp) + v - k Xy (k, kr),

1 [ked3k| M (ki — qh)>2 }
Y. = - L lagy —gu+dgy — — T ) o
s P CTSEN=: [ gs — &5+ 4ea amz &pv
1 ol B (k' — g)?
Y, = - - —2 L e A A
° 4/ (2r)3 [gs et E T gPV]

1 (% d%q| |k| - |ql ke (KM — q#)?
.o o= - s —28A + — T g
v 2] (2n) kPE [gs AT G awe gPV}
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L Relativistic dynamics

Large scalar/vector fields

saturation density k_=1.35

T T T T
400 o=
-z
200 0
< I ks,
2
= of
=
W
-200 - B
M
4001 M
1 1 1 1 1 1
0 100 200 300 4000 200 400
k [MeV] k [MeV]

-5

-10

Mapping of NN potentials on relativistic operator basis
— large scalar/vector fields — universal feature of NN interaction

0. Plohl, C.F., van Dalen, PRC 73 (2006) 014003
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L Relativistic dynamics

Role of short range correlations

Tree level HF -

Single particle potential U, full self-consistent DBHF calculation
' ' T T T
T | 400 M
& -6 Nijmegen Il 200 M
o—0 Argonne Vv, S‘ | i
O—O Bonn A
- Nimegenl =  Of =—=DBHF(BomnA) |
o—a CD Bonn ;‘ 0—o tree level (Bonn A) |
4&—A |daho
o =
-400P s |
-100{ ‘ g o
0 200 400 0 200 400 600 800
k [MeV] k [MeV]

Us.p.(k) = g (@(k)|Z|u(k))
= MXs/E — o + Zyk?/E¢



Properties of symmetric and asymmeteric nuclear matter within DBHF theory

[ Relativistic dynamics

What generates the scale in chiral EFT?

LO ‘
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L Relativistic dynamics

What generates the scale in chiral EFT?

LO ‘
S 400 f==—=—o—8—o—o—0-—0—o only C;#0
2 o Rak 200 .
——ABIBE VoGt Cray- 5 < .5
™ ™ ’ 1
(0]
)
,,,,,,,,,,,,,,, 40.01 [, (+full LO
NLO P = 5 (+u )
W L

SR -y {

leading order 27 exchange —400'W full NLO

0 200 400
V=...4+GC(=i5-(Gx§)+...+G(..) k [MeV]

Large scalar/vector fields — NLO contact terms (strength of LEC Gs is dictated
by P-wave NN scattering)
— Effective nucleon mass M* = M + ¥ s — short-distance physics

0. Plohl, C.F., PRC 74 (2006) 034325
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L Dirac-Brueckner-Hartree-Fock

Relativistic Brueckner
> N+OBEP ( V = an7ﬂ'7p77]75)
» 2-N correlations in hole-line expansion

» self-consistent sum of ladder diagrams

Dyson-Equation: Bethe-Salpeter-Equation:
G =G+ GXG T=V+i[VGGQT

S T T

Self Energy:
Z(p, k) =32 <alT(q,k)lq >=Es —70Xo +7 - kXv
qgeF

2 T 1
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LDirac—Bruecknelr—Hartree-Fock

Technicalities /approximations

» 3-dim. reduction of BSE: Thompson eq.
» angle averaged Pauli operator

» Quadratic approx. to s.p. potential: X5 o(kF)

Brockmann/Machleidt 90, Envik et al., Sammarunca et al.,. ..

m* m*Xg
Usp (k) = =Y <kqlT(q,k)kg>= ————>— — %
E* por- VkZ+ (M+Xs)?

> Projection on covariant amplitudes: X5 v(kr, k)

Horowitz/Serot 87, Malfliet et. al., Tiibingen

» Include negative energy states

Weigel et al., DeJong/Lenske
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L Dirac-Brueckner-Hartree-Fock

PV choice reduces on-shell ambiguities

pos. energies

v

On-shell: Equal ps and pv matrix elements
ps couples to negative enrgy states:

v

< olPlu>=<ulPViu> , <V|Plu>=1,<V|PV|u>=0

Different contributions to X:

v

tr[PG(q)] >> tr[PVG(q)]

v

critical for 1-m-exchange:
pv coupling removes spurious contributions to > s and X

v

Only possible in Tjon&Wallace basis
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L Dirac-Brueckner-Hartree-Fock

Isospin asymmetric matter

» Coupled channel problem for the np channel

» 6 instead of 5 independent helicity/covariant amplitudes

Tnn = Vnn + l/ Vnn an Gn Gn Tnn
Top = Vop+i / Viop Qop Gp Gp Tp
TP = V3+i/vn‘;anGnGpTngi/vjf,opnGpGnT;;

X = vn>,2+i/Vn)f)QpnGpGnTn'fﬁ"/Vn?aanG"GPTn):g
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LNuclear bulk properties

Model comparision: nuclear matter
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see e.g. C.F. arXiv:0711.3367
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L Nuclear bulk properties

Bulk properties (with Bonn A)

» Saturation properties:
psat = 0.184 fm™3 Eg = —16.15 K =230 MeV M* = 637 MeV
» Symmetry energy:
Eym =316 MeV @ p=0.160 fm>
» Maximal neutron star mass:

M = 2.33 M,

Gross-Boelting, C.F., Faessler, NPA 648 (1999) 105
van Dalen, C.F., Faessler, NPA 744 (2004) 227
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LNuclear bulk properties

Model comparison: EOS

Perturbative treatment with Vo, x+3-BFs (Bogner et al, NPA 763 (2005) 59)
BHF with AV13+3-BFS (Catania group)

O T T T T
F T I T
\ — DBHF Bonn A
\ | —- BHFAV,+3BF
\
5 \ |— 2ndorderV,  +3-BF
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[ Nuclear bulk properties

Model comparison: symmetry energy

50 4 — DBHF — (&= SKM* e
M Shetty et al., Fe+Fe/Ni+Ni [ | 0—— SkLya s ]
| @ Shettyetal, Fe+NiNi+Ni | - C DBHE <]
6, 6 /7
20 M Khoaetal, p(He,Li)n | | 100 [ |o—o var AV, ./’. n
< 30F C
s | -
c L
LIJa‘ 20—
10—
oLt 1 | IR
0 0.5 1

plp, P/p,
E(p,/@) = E(p)+Esym(p)52+O(ﬂ4)+ ﬂ:Yn_Yp

o =] - =
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LProton-neutron mass splitting

Effective nucleon mass

Different definitions are used!

» Non-relativistic mass:

1d

-1
_ -1

parameterizes non-locality in space (k-mass) and time (e-mass)

Mahaux et al., Miither, Frick,..

» Dirac mass:

m*
mp=M+Xs ,Usp ~ Ef

2s+20

scalar part of self energy
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LProton-neutron mass splitting

Effective nucleon mass

/
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LProton-neutron mass splitting

Proton-neutron mass splitting

. * *
» BHF: MR > MR p

. * * . * *
» RMF: mp, , <mp, 5 Mg, < Myg, (p+0)
Baran, Di Toro et al., Phys. Rep. 410 ('05) 335

» DBHF with ¥ extracted by fit method: mp, , > mp, ,
Alonso & Sammarunca, PRC 67 ('03) 054301

> DBHF with projection method:  mp , < mp, ,
de Jong & Lenske, PRC 58 ('98) 890; van Dalen, C.F., Faessler, NPA 744 ('04) 227

> non-rel. mass in DBHF:  mje | > mpe
van Dalen, C.F, Faessler, PRL 95 (2005) 022302
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L Proton-neutron mass splitting

Proton-neutron mass splitting

1000 e T
[ nonrelativistic mass T Dirac mass 1
N 900: I — p=00 ]
3 L N — B =04 |
= [ T —- P=06] 1
Y L I — B=10| |
8 sl + .
E L 4 4
° L I 1
= r T 1
8 700F L SM_ ]
SR T P —
s | | L —
=1 r Neutron Fermi momentum - T
3 600 - = _
=z [ = 2
L 1 r'b:0.166fm |
I I N U NI BRI AU I
500O 1 2 3 0 1 2 3 4
Momentum k [fm']] Momentum k [fm'J]

van Dalen, C.F., Faessler, PRL 95 (2005) 022302



Properties of symmetric and asymmeteric nuclear matter within DBHF theory

I—Proton-neutron mass splitting

Guidance for phenomenology
SkLy5: mass splitting m; < my (in contrast to BHF /DBHF)

» O ©
T T

| sLys

N AR YA

HEVANIV

6 . . . . . .
20 40 60 80 100 120 140 160 180 200 220
A

Eip - Eexp [MeV]
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LProton-neutron mass splitting

Guidance for phenomenology
SkLy5: mass splitting m; < my (in contrast to BHF /DBHF)

OFR;»A A AV
.2/7&/”\ VNN

Eip - Eexp [MeV]
N

6 . . . . . . . . .
20 40 60 80 100 120 140 160 180 200 220
A

new fit, small change of parameters: mj > my (kv = 0.3)

Lesinski et al., PRC 74 (2006) 044315
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L Proton-neutron mass splitting

Isovector optical potential: Ui, = (U, — U,)/203

80 T e e T T
C == DBHF | I a8 SKM* |-
- A+ - BHF —+ o—o SkLya| ]
60 o—o Gogny| -~ RMF |
— F * RIA T ,:
T o E:
2 & ’ ]
:58 20? a 0 *
C C FokoA
or Fun .
" 0.5p,, B=0.4 T py B=0.4 -

ool b by b by T b by g |
25 1 2 3 4 5 1 2 3 4 5

k [fm™] K [fm™]

DBHF: van Dalen, C.F., Faessler, PRC 72 (2005) 065803
BHF: Zuo et al. PRC 72 (2005) 014005

RIA: Chen, Ko, Li, PRC 72 (2005) 064606
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Main differences between DBHF /BHF

» vector/scalar density
pg o< ata— bib

ps < ala+ bfb
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Main differences between DBHF /BHF

» vector/scalar density
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» dressed interaction:
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» quenching of tensor force by m*/M
iterated OPE is less important for satuation
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L DBHF versus BHF

Main differences between DBHF /BHF

>

vector/scalar density

pg o< ata— bib

ps < ala+ bfb

dressed interaction:

(ulV]u) = (ur|V]u")

quenching of tensor force by m*/M
iterated OPE is less important for satuation

New scale: large scalar/vector fields
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L DBHF versus BHF

Main differences between DBHF/BHF

>

vector/scalar density

pg < ala— blb

ps < ala+ bib

dressed interaction:

(u[V]u) = (u™|V]u")

quenching of tensor force by m*/M
iterated OPE is less important for satuation

» New scale: large scalar/vector fields

» effective inclusion of 3-body forces:

box diagramms, intermediate A
Z-graphs
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L DBHF versus BHF

3-body forces

AE from 3BF nuclear matter EOS
80 , , . 30 . . (=) (b)
-—- 20-(NN) 3BF ELE
70 | — Av,+full 38F . I i |7 | e
BHF n o e
% 60 r| — DBHF, Bonn A st
2 2 N N N
= (c) (d)
< l
o _m
Q L ap =)
Ll 4 op Tow
II.L
Q
& ]
& .
L
—30 . . .
0 1 3 4 1 3 4

2
/P,

Zuo et al., NPA 418 (2002) 706




L Chiral condensate

Properties of symmetric and asymmeteric nuclear matter within DBHF theory

Connection to QCD

» scalar condensate: (Gq) ~ (—250 MeV/)3
» naive QCD sum rule interpretation:




L Chiral condensate

Properties of symmetric and asymmeteric nuclear matter within DBHF theory

In-medium chiral condensate

Hellmann-Feynman:

(@9)on _ PN d
@ - me2 |7 "dm A
pion-nucleon sigma-term

M _
on=m-—_— =< N|mgq|N >



L Chiral condensate

Properties of symmetric and asymmeteric nuclear matter within DBHF theory

In-medium chiral condensate

Hellmann-Feynman:

(@9)on _ PN E
@ao - mez TN Mama
. . am
pion-nucleon sigma-term oy = m—— =

N|mgq|N
dm =< NImgq|N >
Problem: unknown quark mass dependence

Z [6E dm;

om; dm
oW, T, p

OE dg;

b | =272
Ogi dm; ]
see e.g. Brockmann, Weise, PLB 367 (1996)




L Chiral condensate

Properties of symmetric and asymmeteric nuclear matter within DBHF theory

In-medium chiral condensate

Solution:

Determine E from chiral EFT NN interaction
Quark mass dependence known up to NLO

Epelbaum, Gldckle, Meissner, EPJA 18, 499 (2003)
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L Chiral condensate

In-medium chiral condensate

Solution:
Determine E from chiral EFT NN interaction
Quark mass dependence known up to NLO

Epelbaum, Gldckle, Meissner, EPJA 18, 499 (2003)

Exact calculation at NLO
Hartree-Fock
Briickner-Hartree-Fock

0. Plohl, C.F., NPA 798 (2008) 75
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L Chiral condensate

Chiral condensate at NLO

1.0

o
o

o
o

<ap,, | <00,

o
i

0.2

0.0
0

» decoupling of condensate

-—- Ieadl ng order approx. |
— HF
— M*/M

‘quark mass dependence
of LECs

<ap,, | <00,

1.0

o
=

o
o

o
i

0.2

T T
--- leading order approx. |
— BHF

Ps/ Py

0.0
0

Ps/ Py

and effective mass

» condensate driven by long-distance physics

» effective mass driven by short-distance physics
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L Heavy ion reactions

Probing dense matter by HICs

e , » Advantage:
1 On earth experiments

Au + Au, /s =200 AGeV, QGSM Tiibingen
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L Heavy ion reactions

Probing dense matter by HICs
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1 On earth experiments

» Disdvantages:
Short time scale, non-equlibrium
Heated matter
Small asymmetries
Surface effects

Au + Au, /s =200 AGeV, QGSM Tiibingen
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L Heavy ion reactions

Probing dense matter by HICs

e == » Advantage:
1 On earth experiments

» Disdvantages:
Short time scale, non-equlibrium
Heated matter
Small asymmetries
Surface effects

» Observables:
Collective flow
Particle production

Au + Au, /s =200 AGeV, QGSM Tiibingen
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|—Heavy ion reactions

Densities at CBM/FAIR

o

Au + Au at b=0

ol
T

3-fluid model
Ivanov, Ruuskikh, Toneev

N
T

—— 20AGeV
—— 10AGeV

Temperature T [MeV]

N

Hadrons

°

R

-

[

Energy density £(0,0,0,t) (GeV/fm®)
w
T

[==)
o

0.5 1.0 15 2.0

1 7
Nuclei Net Baryon Densi E
i ty Net baryon density p(0,0,0,t) (fm 3)

» DOFs, phase transition?

» SIS: symmetric nuclear matter up to 3 pg

see e.g. CBM Physics Book: Collision Dynamics
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Subthreshold kaon production

NN — NAKT
N — AK™T
K~ (as):

» Subthreshold particle production: E;,p < Espy:
K*(us):
NN — NNK+tK~

Eth, - 158 GeV

Einr = 2.5 GeV
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Subthreshold kaon production

» Subthreshold particle production: E;,p < Espy:
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» Energy provided by multistep collisions:
excludes large surface effects
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(almost) no final state interaction
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L Heavy ion reactions

Subthreshold kaon production

» Subthreshold particle production: E;,p < Espy:
K*(us): NN +— NAKT Einr = 1.58 GeV
N +— AK™T
K= (ms): NN +— NNKTK~ Ey, = 2.5 GeV

» Energy provided by multistep collisions:
excludes large surface effects

» KT (us): strangeness conservation:
(almost) no final state interaction

» ideal probe for dense phase
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L Heavy ion reactions

RQMD transport calculations
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Data: Sturm et al., KaoS Coll., PRL 86 (2001) 39
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LHeav ion reac tions

Conclusions from KaoS data

7 . : RN —
i i Au+Au 1.5 A GeV
6 f | — har 1 L10° L o .o 5=126
sof 3 [t a=1.20 ]
N =5
5t v : sﬂﬂf‘i”’
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(M A popa ! MR e
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2t L™ =
o EIiO[GeV/c] J =

without mdi

@—@ soft EOS, with pot
- W hard EOS, with pot
@ Kaos, Sturm et al., PRL 86 (2001) 200 300 400

compressibility x (MeV)

C.F. et al., PRL 86 (2001) 1974
C.F.,Prog. Part. Nucl. Phys. 56 (2006) 1 Hartnack et al. PRL 96 (2006) 012302
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LHeavy ion reactions

Density range tested by K+ @ SIS

T T T T T T Al
! ! ! — DBHF Bonn A J
soft EOS 100H g —
— — BHF AV, +3-BF ,/ DBHF
c 10 1 3 ’ N/ 4
=, — <= var AV, g+dv ,
> g ’
§- © 5o — var AV, +8v+3-BF
=< S — — Skyrme (K=380)
s, —_ Skyrme (K=200) |
s < ]
S w 0 . N
""" | "_"_"—'(\'B.HF |
10° 50 P I U N
0 / 4 0 1 2 3 4
P/Pgy PP,

e.g. Au+Au @ 0.8 AGeV < p/pg >=1.53
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LHeavy ion reactions

Density range tested by K+ @ SIS

T T T T T T Al
" ' ! — DBHF Bonn A g
— softEOS 100H g —
Au+tAu | hard EOS = BHRAV, /
— — BHFAV,+3-BF ,/ DBHF
c 10 1 3 ’ N/ 4
=, — <= var AV, g+dv ,
> g ’
§- © 5o — var AV, +8v+3-BF
=< S — — Skyrme (K=380)
s, —_ Skyrme (K=200) |
s < ]
5 2
oo > i
| == (\'B.HF |
10° 50 P I U N
0 / 4 0 1 2 3 4
P/Pgy PP,

e.g. Au+Au @ 0.8 AGeV < p/pg >=1.53

Below 2.5 + 3pg EOS is soft!
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L Heavy ion reactions

Directed /elliptic flow

RBUU transport: e.g. Gaitanos et al., EPJA 12 (2001) 421; C.F., Gaitanos, NPA 714 (2003) 634

Directed flow in HICs

120 T T T T
Q00 t ey
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= 87
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"D_x 40 [y @FOPI
\"

20 1 1 1
0.2 0.4 0.6 0.8
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Large non-equilibrium effects:
— makes the link to equilibrium EOS difficult — careful treatment!

eliptic flow
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L Heavy ion reactions

Directed /elliptic flow

RBUU transport: e.g. Gaitanos et al., EPJA 12 (2001) 421; C.F., Gaitanos, NPA 714 (2003) 634

Directed flow in HICs 0,05 I T
120 T T T T | 1
— o%
L 100} - 0,004 .1 il
3 - g | § ]
> r =
— .2 -0,05 -
A 60} B - W DB Groningen §_
:\( A—A DB Tuebingen T
un_x 40 fo- @FOPI -0,10- 2§8§fE“5 -
vV L M DB-CNM
20 L L L O DB-LDA
0.2 0.4 0.6 0.8 0 |1 1I0
E., [A.GeV] E,. [AGeV]

Large non-equilibrium effects:
— makes the link to equilibrium EOS difficult — careful treatment!

— fair agreement with data
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LSummary

Summary & conclusions

> Relativity
— new scale: large fields
— direct consequence of NN-force (SO-force)

> many-body-theory: DBHF
— “best- bulk properties
— correct pn mass-splitting
— isovector potential

» EOS
— soft at moderate, stiff at high densities
— asi-stiff
» decoupling of effective mass and scalar condensate
— short-distance / long-distance physics
» DBHF EOS in agreement with
— heavy ion collisions
— astrophysical constraints
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